| <Reference List> | |
| Type: | Preprint |
| National /International: | International |
| Title: | Fully nonlinear free boundary problems: optimal boundary regularity beyond convexity |
| Publication Date: | 2024-12-22 |
| Authors: |
- Damião J. Araújo
- Andreas Minne - Edgard Almeida Pimentel |
| Abstract: | We study a general class of elliptic free boundary problems equipped with a Dirichlet boundary condition. Our primary result establishes an optimal \( C^{1,1} \)-regularity estimate for \( L^p \)-strong solutions at points where the free and fixed boundaries intersect. A key novelty is that no convexity or concavity assumptions are imposed on the fully nonlinear operator governing the system. Our analysis derives BMO estimates in a universal neighbourhood of the fixed boundary. It relies solely on a differentiability assumption. Once those estimates are available, applying by now standard methods yields the optimal regularity. |
| Institution: | DMUC 24-54 |
| Online version: | http://www.mat.uc.pt...prints/eng_2024.html |
| Download: | Not available |
